Breed reptiles in captivity: Crocodilians

How is the evidence assessed?
  • Effectiveness
    not assessed
  • Certainty
    not assessed
  • Harms
    not assessed

Study locations

Key messages



  • Abundance (1 studies): One study in China reported that a captive population of Chinese alligators increased from 10,000 to 15,000 individuals over a 10-year period.
  • Reproductive success (4 studies): Four studies in the USA, Venezuela and Brazil reported that 1–4 captive females crocodilians, including four captive-born broad-snouted caiman, produced clutches of 17–49 eggs, with hatching successes of 35–86% or 6%.
  • Survival (1 studies): One study in Brazil reported that 4% of broad-snouted caiman hatchlings died within one week
  • Condition (1 studies): One global review reported on one study on Chinese alligators that found that captive breeding had a positive effect on genetic variation compared to wild populations.


About key messages

Key messages provide a descriptive index to studies we have found that test this intervention.

Studies are not directly comparable or of equal value. When making decisions based on this evidence, you should consider factors such as study size, study design, reported metrics and relevance of the study to your situation, rather than simply counting the number of studies that support a particular interpretation.

Supporting evidence from individual studies

  1. A study in 1966–1979 in Ohio, USA (Jardine 1981) reported that Schneider's smooth-fronted caimans Paleosuchus trigonatus bred successfully in captivity after 13 years. In 1979, a female produced a clutch of 17 eggs, six of which hatched successfully after 115–118 days of incubation. One hatchling died after two weeks, and the other five survived at least three months. In 1975, a clutch was laid but the eggs rolled into the water and were broken. In 1966–1967, a juvenile pair of caimans were acquired and housed together in a circular pool with a concrete island along with several other crocodilians. After the clutch was lost in 1975, the pair were moved to a new enclosure with dense vegetation and a pool of water. Water temperatures ranged from 21–27°C and air temperatures were 21°C in winter and followed ambient temperatures in summer. Eggs were moved to a Styrofoam container, covered with peat moss and incubated at 29–31°C and 92–100% humidity. After 112 days of incubation, eggs were uncovered, moved gently and a grunting call was made to simulate actions by an adult.

    Study and other actions tested
  2. A study in 1987–1989 in Barinas state, Venezuela (Ramo et al. 1992) reported that one of two female Orinoco crocodiles Crocodylus intermedius bred successfully in captivity. In 1987–1988, two females produced four clutches of 37–49 eggs each. Hatching success of eggs from one female was 72%, but no eggs produced by the other female hatched. Incubation periods were 78–85 days. In 1989, a further clutch of 52 eggs was laid, but no data on hatching success was available. Yearly survival of hatchlings was 4–50%. In 1987, one male and two female crocodiles were acquired and housed in an outdoor facility with two ponds (20 x 10 x 1 m and 10 x 4 x 1 m) and two sand beaches for egg laying. Nests were incubated under natural conditions.

    Study and other actions tested
  3. A study in 1996 in a captive facility in São Paulo, Brazil (Verdade & Sarkis 1998) reported that second-generation captive-bred broad-snouted caiman Caiman latirostris bred successfully in captivity. Four female broad-snouted caiman first laid a single clutch each at approximately 10 years old (36–44 eggs/clutch). Hatching success was 40–86% per clutch (81 of 121 eggs hatched). Three hatchlings died within the first week of emerging. Four female and one male broad-snouted caiman were born in captivity in 1986, and maintained in enclosed pens (see original paper for details). Eggs were artificially incubated (see original paper for details).

    Study and other actions tested
  4. A review of studies investigating the genetics of captive breeding programmes (Witzenberger & Hochkirch 2011) found that captive breeding reptiles had mixed genetic outcomes in comparison to wild populations. Nine percent of 131 studies related to reptiles. One study on American alligators Alligator mississippiensis found that captive breeding had a positive effect on two measures of genetic diversity (measured as expected heterozygosity and number of alleles), but a negative effect on the chance of inbreeding compared to wild populations.  Two databases (Web of Science and Zoological Record) were searched for studies investigated the genetics of captive populations up until 2010.

    Study and other actions tested
  5. A study in 2012–2015 at the Smithsonian’s National Zoological Park, Washington DC, USA (Augustine 2016) found that Cuban crocodiles Crocodylus rhombifer bred in captivity, but hatching success of eggs was low. Twenty-six eggs were produced in 2012 and 24 in 2015. A total of three eggs hatched successfully and a further four produced hatchlings after eggs were opened manually or hatchlings were assisted during emergence. All eggs came from a single breeding pair of adult crocodiles, and 10 from each clutch that showed signs of development were incubated (eight in a 1:1 mixture of vermiculite and water, and two in suspended incubation containers). Eggs in suspended incubation containers were suspended over saturated vermiculite or a saturated sponge and standing water. Incubation containers were vented throughout the process and water was added to the vermiculite weekly.

    Study and other actions tested
  6. One study in 1982–1985 and 2006–2016 in a captive facility in Xuancheng, Anhui Province, China (Manolis et al. 2016) reported that a captive population of Chinese alligators Alligator sinensis increased over a 10-year period. The captive population grew from 10,000 individuals in 2006 to 15,000 in 2016. In 1982–1985, wild alligators (212 individuals) and nests (778 eggs) were brought in to captivity as part of a breeding programme.

    Study and other actions tested
Please cite as:

Sainsbury K.A., Morgan W.H., Watson M., Rotem G., Bouskila A., Smith R.K. & Sutherland W.J. (2021) Reptile Conservation: Global Evidence for the Effects of Interventions for reptiles. Conservation Evidence Series Synopsis. University of Cambridge, Cambridge, UK.

Where has this evidence come from?

List of journals searched by synopsis

All the journals searched for all synopses

Reptile Conservation

This Action forms part of the Action Synopsis:

Reptile Conservation
Reptile Conservation

Reptile Conservation - Published 2021

Reptile synopsis

What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.

Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust