Study

Culture, yield and bioremediation potential of Palmaria palmata (Linnaeus) Weber & Mohr and Saccharina latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl & G.W. Saunders adjacent to fish farm cages in northwest Scotland

  • Published source details Sanderson J.C., Dring M.J., Davidson K. & Kelly M.S. (2012) Culture, yield and bioremediation potential of Palmaria palmata (Linnaeus) Weber & Mohr and Saccharina latissima (Linnaeus) C.E. Lane, C. Mayes, Druehl & G.W. Saunders adjacent to fish farm cages in northwest Scotland. Aquaculture, 354-355, 128-135.

Actions

This study is summarised as evidence for the following.

Action Category

Integrated aquaculture systems

Action Link
Sustainable Aquaculture
  1. Integrated aquaculture systems

    Between 2004 and 2005, a replicated, controlled trial in Scotland between 2004 and 2005 (Sanderson et al., 2012) found that growth of two algae species, Palmaria palmata and Saccharina latissima was enhanced when grown close to fish farm cages. Algae grown on frames adjacent to fish farms had 63% and 27% greater fresh weight biomass compared to algae grown on frames away from fish farms for P.palmata and S.latissima respectively. A similar pattern was observed for algae grown on longlines.

    Nitrogen content of the algae grown at reference sites away from the cages was lower than those grown close to the fish cages (Percentage nitrogen in: farm frames- 4.6 and 1.90%, reference frames- 2.3 and 1.23%, farm longlines- 2.7 and 1.65% and reference longlines- 2.0 and 1.29% for P.palmata and S.latissima respectively).

    Algae were grown at three sites adjacent to fish farm cages and at seven other sites distant from fish farm cages. Attached to three buoyed frames at each site were stings with P. palmata at 1–1.8 m depth and ropes with S. latissima at 1.8–2.6 m depth. In addition, three longlines were put in place, two at reference sites away from the cages and one running perpendicular to a group of cages. Seeded string of 2 to 6 m lengths of P.palmata was deployed three times throughout the experiment. Three groups of five droppers were attached to each longline. Droppers of S. latissima consisted of 7 m lengths of 10mm three-strand polypropylene rope with 10 cm lengths of seeded string inserted into the lay of the rope at depths of 1, 2, 3, 4 and 5 m.

Output references
What Works 2021 cover

What Works in Conservation

What Works in Conservation provides expert assessments of the effectiveness of actions, based on summarised evidence, in synopses. Subjects covered so far include amphibians, birds, mammals, forests, peatland and control of freshwater invasive species. More are in progress.

More about What Works in Conservation

Download free PDF or purchase
The Conservation Evidence Journal

The Conservation Evidence Journal

An online, free to publish in, open-access journal publishing results from research and projects that test the effectiveness of conservation actions.

Read the latest volume: Volume 21

Go to the CE Journal

Discover more on our blog

Our blog contains the latest news and updates from the Conservation Evidence team, the Conservation Evidence Journal, and our global partners in evidence-based conservation.


Who uses Conservation Evidence?

Meet some of the evidence champions

Endangered Landscape ProgrammeRed List Champion - Arc Kent Wildlife Trust The Rufford Foundation Save the Frogs - Ghana Mauritian Wildlife Supporting Conservation Leaders
Sustainability Dashboard National Biodiversity Network Frog Life The international journey of Conservation - Oryx Cool Farm Alliance UNEP AWFA Bat Conservation InternationalPeople trust for endangered species Vincet Wildlife Trust